

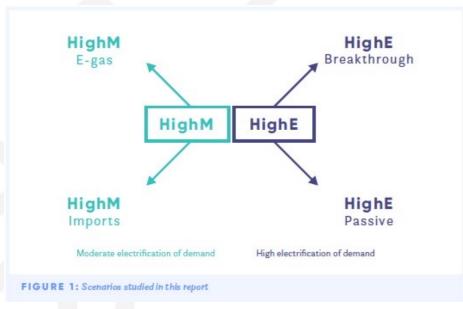
Production, transport, storage and economics of hydrogen

Leon Stille Energy Delta Institute, part of New Energy Coalition *Hydrogen summer school*

Energy Delta Institute

'Being the transitional knowledge bridge between traditional and new energy actors'

- Business School founded 2001
- Part of New Energy Coalition
- Focus:
 - Open market programs, courses, incompany training and networking events
 - Yearly training of over 1000 energy professionals
 - Supported by (in-house) academia and expert lecturers
- 50 FTE (13FTE EDI), 6M revenue/yr



Leon Stille

General Manager Energy Delta
Institute | Energy Transition |
Innovation | Education | Hydrogen
| CCUS | Green Gas | Speaker |
Moderator

EU Energy system transformation

Source: net zero 2050

How to further decarbonize?

Four scenario's:

- High molecules (renewable gas and fuels)
- High Molecules (import renewable gas and fuels)
- High electrons (breakthrough/smart)
- High electrons (passive/less smart)

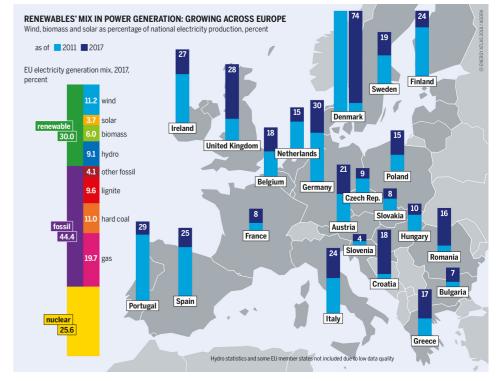
Key Drivers for scenario choices

- 1. Economic
 - Cost and benefits
- 2. Social
 - Acceptance and disruption
- 3. Technical
 - Availability of (future) technology

EU Energy system greening

Greening so far

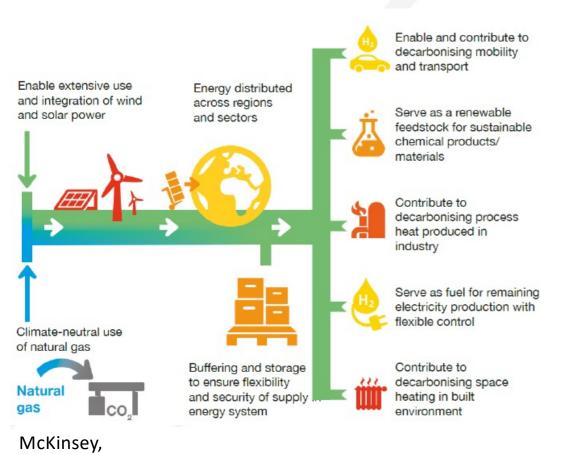
- Electricity mix
 - Renewable around 30%
 - Fossil around 45%
 - Nuclear 25%
- Fuels and solids
 - Renewables around 4%
 - Fossil 96%


1000 billion euro 10 year time 0,5% EU economy

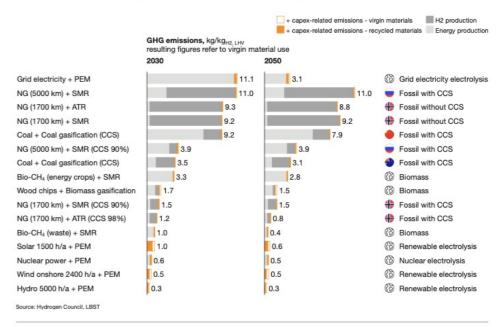
In total mix 2019

80% Fuel and gas, 20% Electricity

HOWEVER, 100% Renewable required 2050!


So the difference in the speed of greening between the electron and molecule part of the EU energy system is striking.

Source: energy atlas 2018



part of New Energy Coalition

2019

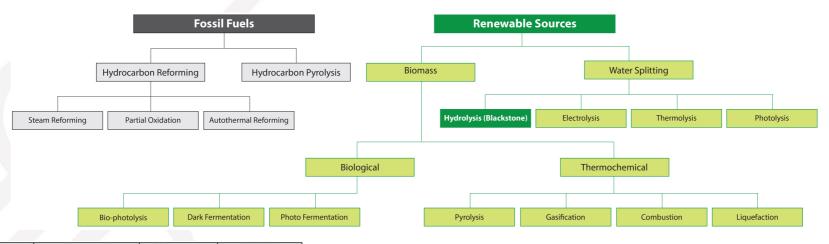
Exhibit 1: Carbon-equivalent emissions by hydrogen production pathways, 2030 and 2050

(resulting figures refer to virgin material use); energy production refers to GHG emissions from the supply of the main input into the H_2 plant (natural gas, coal, electricity), while H_2 production refers to direct GHG emission of H_2 plant, including from plant auxiliary electricity use

⁶ Reference: Amec Foster Wheeler; IEAGHG: Techno-Economics of Deploying CCS in a SMR Based Hydrogen Production using NG as Feedstock/Fuel; IEAGHG Technical Report, February 2017.

Reference: Hydrogen Council: Path to Hydrogen Competitiveness: A Cost Perspective, 2020.

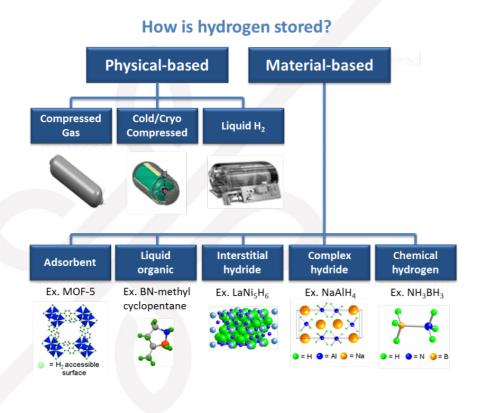
Colours of Hydrogen

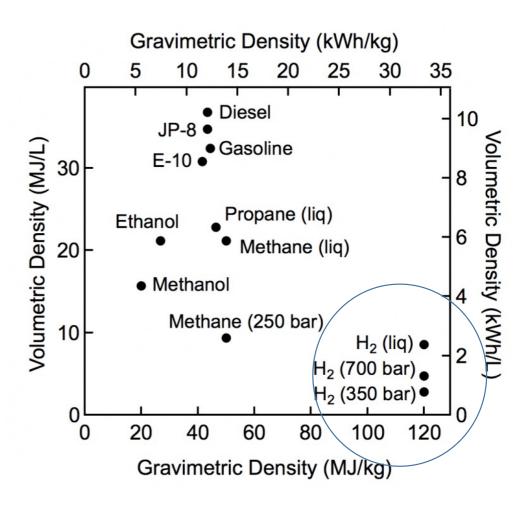

	Terminology	Technology	Feedstock/ Electricity source	GHG footprint*	
PRODUCTION VIA ELECTRICITY	Green Hydrogen		Wind Solar Hydro Geothermal Tidal	Minimal	
	Purple/Pink Hydrogen	Electrolysis	Nuclear		
			Mixed-origin grid energy	Medium	
PRODUCTION VIA FOSSIL FUELS	Blue Hydrogen	Natural gas reforming + CCUS Gasification + CCUS	Natural gas coal	Low	
	Turquoise Hydrogen	Pyrolysis	Natural gas	Solid carbon (by-product)	
	Grey Hydrogen	Natural gas reforming	radioral gas	Medium	
	Brown Hydrogen	Gasification	Brown coal (lignite)	High	
	Black Hydrogen	Casilication	Black coal	riigii	

^{*}GHG footprint given as a general guide but it is accepted that each category can be higher in some cases.

part of New Energy Coalition

Hydrogen production methods


Technology	Feedstock	Efficiency	Maturity
Steam reforming	Hydrocarbons	70-85%	Commercial
Partial oxidation	Hydrocarbons	60-75%	Commercial
Autothermal reforming	Hydrocarbons	60-75%	Near term
Plasma reforming	Hydrocarbons	9-85%	Long term
Biomass gasification	Biomass	35-50%	Commercial
Aqueous phase reforming	Carbohydrates	35-55%	Med. Term
Electrolysis	H ₂ O + electricity	50-70%	Commercial
Photolysis	H ₂ O + sunlight	0.5%	Long term
Thermochemical water splitting	H ₂ O + heat	NA	Long term


Note: hydrogen is not a source but an energy carrier. Efficiency is important!

Source chart: P. Nikolaidis and A. Poullikkas (2017), "A comparative overview of hydrogen production processes," 67 <u>Renewable and Sustainable Energy Reviews</u>, 597–611. Source table: http://article.sapub.org/10.5923.c.chemistry.201501.06.html

Hydrogen transport and storage

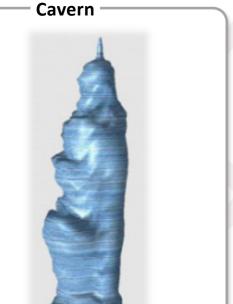
Hydrogen transport and storage

Power Unavoidable physical losses

- **260** km
- € 600 mio
- 1 GW capacity
- € 230/kW/100 km

Leak-free: no losses

- 230 km
- € 500 mio
- 20 GW capacity
- € 11/kW/100 km



Offshore wind farms at GW scale: the combination of local conversion of power to hydrogen + a pipeline system may well be cheaper than a GW scale cable....certainly when current gas infrastructure is used.

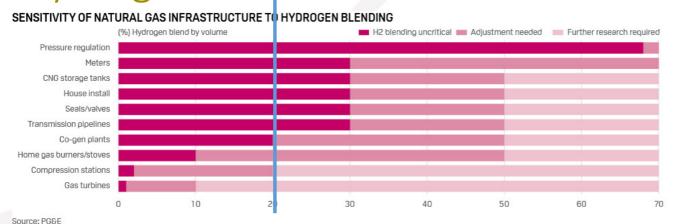
Hydrogen transport and storage

Volume

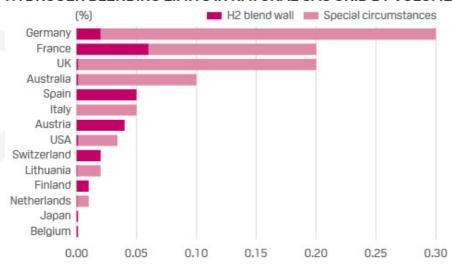
1 cavern with 1 mln m³ of hydrogen equals
 240,000 MWh (= 6,100 tons H₂)

Equivalents

- 24 mln power walls (10 KWh, Tesla)
- 2400 of the largest batteries in the world (100 MWh, Tesla)


Experience

- H₂ storage in caverns is existing technology
- Many years of experience in the UK and US



1 1 part of New Energy Coalition

Hydrogen infrastructure re use

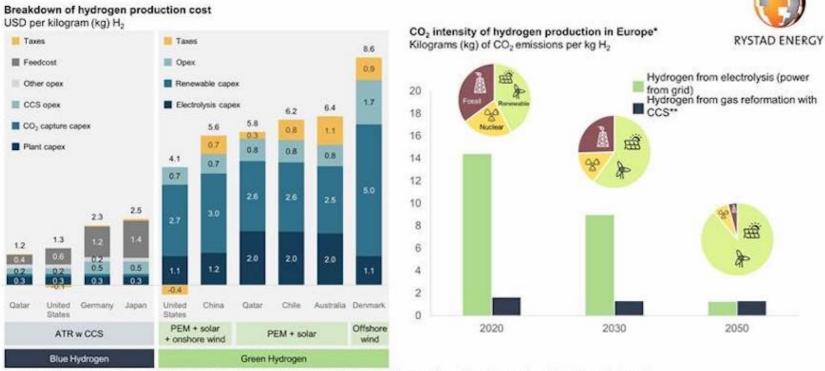
HYDROGEN BLENDING LIMITS IN NATURAL GAS GRID BY VOLUME

Source: S&P Global Platts

Pro's:

- Displaces fossil fuels (Natural gas)
- Enables re use of existing infrastructure
- Minimal adjustments required for end users currently using NG
- Kickstart hydrogen economy--> quick roll out possible

Con's:


- Significant adjustments are still required for infrastructure parts
- Hydrogen has lower energy density so CO2 reduction by volume is low
- Overall transport efficiency is low (different from economic efficiency)
- Regulatory challenge

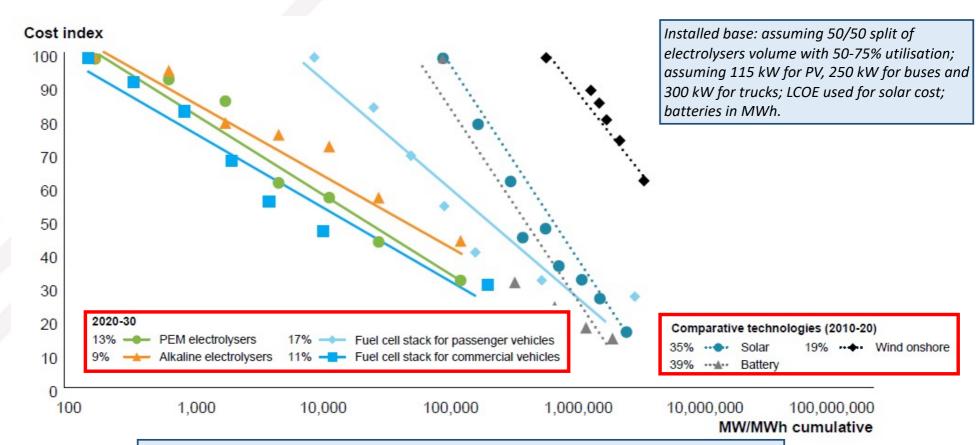
Hydrogen economics

Hydrogen production costs breakdown /CO2 intensity per solution in Europe

A comparison between Blue and Green hydrogen solutions

1 euro/kg 8 euro/MMBtu

Current gas price around 12 euro/MMBtu


Source: Rystad Energy's research and analysis, PowerCube, Hydrogen Solutions, European Environment Agency

^{*}The development of the carbon intensity of H2 production will be dependent on how fast Europe's grid is decarbonized

^{**}Upstream and midstream emissions included

Hydrogen economics- learning rates

Capex development of selected technologies over total cumulative production, indexed to 2020 values (2010 for comparative technologies).

Source: Hydrogen Council, Path-to-Hydrogen-Competitiveness _Full-Study-1 2019

Hydrogen economics

Figure 1: Summary of the economics of a hydrogen economy

	Scaling-	up hydrogen	
Requires	Which s hould drive the delivered cost of clean hydrogen down to	Delivered costs could fall further to	Which would make clean hydrogen
\$150 billion	\$15/MMBtu	\$7.4/MMBtu	competitive
of cumulative subsidies to 2030	in many parts of the world by 2030	by 2050	with current natural gas prices in China, India, Brazil and Germany
	En	ables	
Making green steel with a	Clean dispatchable powerwith a	Green ammonia with a	Fuel cell pow ered trucks to compe

Enables				
Making greensteel with a Clean dispatchable powerwith		Green ammonia with a	Fuel cell pow ered trucks to compete it	
\$50/tCO2	\$32/tCO2	\$78/tCO2	2031-34	
price on coking coal	price on natural gas	price on natural gas	with dieselinternal combustion engines	

Abatement			
or up to one-third	Reduction of up to 20% of gbbal emissions for under \$100/tCO2	How ever the signs of scale-up are not yet there	Investors s hould keep w atch for seven signposts
of global emissions from fossitues and industry	using hydrogen at \$7.4MMBtu	as policy support is insufficient	to determine whether a hydrogen economy is emerging

Source: BloombergNEF. Note: Clean hydrogen refers to both renewable and low-carbon hydrogen (from fossil fuels with CCS). Abatement cost with hydrogen at \$1/kg (7.4/MMBtu).

Thank you!

Leon Stille, General Manager Business School EDI I.Stille@newenergycoalition.org