AI FOR THE INTERPRETATION OF BIOMEDICAL IMAGING AND GENETIC DATA

OPPORTUNITIES AND CHALLENGES TO TRANSLATE TO CLINICAL PRACTICE

Wiro Niessen

Erasmus MC & TU Delft Quantib BV (disclosure)

ImageNet 2012: Image classification breakthrough with convolutional neural nets

Can this success be translated to clinical practice?

- We need to do to more than image perception.
- We need to collect more than images alone (genetics, omics, clinical information, exposome).
- Human biology and pathology is highly variable.
- Data bias is a challenge

Erasmus MC

Population imaging: Rotterdam Study

- Population study running over 25 years
- > 15.000 subjects included
- Extensive geno- and phenotyping (imaging) available

Population imaging: design

Rotterdam Scan Study (> 15.000 brain MRI) library of quantitative imaging biomarkers

Brain tissue

White matter lesions

Brain structures

Microstructure

Incidental findings

Micro bleedings

Brain structures

Subcortical WML

Structural connectivity

Erasmus MC zafus

White matter tract segmentation

Diffusion tensor

Reconstruction
Step 1

Step 3
Post-processing

CNN network: 0.5s per tract

Tractography and atlas-based segmentation Minutes to multiple hours

Clinical decision support

Quantib[®] ND*

Reference imaging biomarker curves from 5.000 individuals of the population-based Rotterdam Scan Study

*FDA cleared and CE marked

Totally new imaging biomarkers

Convolutional Neural Network architecture for brain age prediction (trained on 5865 images, tested on 2353)

Kaplan-Meier curves for new biomarker (delta brain / calendar age)

MRI

Genetics

Population imaging genetics

Imaging genetics: gaining insight in relation genetic liability, environmental factors and imaging phenotype

VBM analysis consisted of 4071 nondemented persons with information available on both genome-wide genotyping and MRI data from the population-based Rotterdam Study. The mean age was 64.7 (+/-10.7) years and 2251 (55%) subjects were women.

Neural Network - KEGG Pathway

Requirements successful introduction Al

High quality data to train algorithms using state of the art algorithm optimization methods

Clear definition of tasks and seamless integration into the workflow

- Proper validation strategies:
 - Many promising algorithms may not function as well in clinical practice as reported in literature
 - Evaluation has been performed on retrospective data, often one or limited number of centers
 - Issues: data bias, lack of generalizability

Data driven precision health requires health data infrastructure

Taking individual variability into account to promote health, prevent & optimize diagnosis, prognosis and treatment

Utilizing our rich data resources and Al

Towards a national COVID-19

Future of healthcare is a learning healthcare system

health RI research infrastructure

What is needed?

- Work on higher quality and better accessible (image) data for science and innovation
- Implement FAIR data, distributed access and Open Science

- Create ML/DL challenges for important tasks
- Prospective validation for responsible introduction AI

Thank you

