Israel Fuel Cells Consortium (IFCC)

Prof. Lior Elbaz lior.elbaz@biu.ac.il

Bar-Ilan University, Israel

Israel Fuel Cells Consortium (Head)

Israeli Fuel Cells Consortium (IFCC)

Team 1: Electrochemistry (E-Team):

- 1) Dr. Lior Elbaz (Head, Team Leader)
- 2) Prof. Zeev Gross (Electrocatalysis)
- 3) Dr. Brian Rosen (Electrochemical Engineering)
- 4) Prof. Ilya Grinberg (Electrocatalysis Theory)

Team 2: Materials (M-Team):

- 1) Prof. Emanuel Peled (Team Leader)
- 2) Dr. Alex Schechter (Materials Science)
- 3) Prof. David Zitoun (Nano-technology)
- 4) Prof. Slava Freger (Membrane Technology)
- 5) Dr. David Eisenberg (Carbon Materials)

Team 3: Testing & Durability (T&D-Team):

- 1) Prof. Yair Ein-Eli (Team Leader)
- 2) Prof. Yoed Tsur (Electroanalysis)
- 3) Prof. Dario Dekel (FC Technology)

Fuel Cells – Status

Current Status

Cost Breakdown

NL-IL Mini-Symposium on Hydrogen and Renewable Energy

*value in SA 2016 baseline

\$30

2016 System

Cost at 500k sys/yr

notive \$20 80kW Autor 10 teduction in BPP Cost (\$6.56* to \$3/kW_{net})

DOE

2020 Target

Removal of Air Humidifie

Recirculation System Cost (\$237* to \$150/system)

PGM-Free Catalysts

\$30

DOE Ultimat

Target

Fuel

Initiative

Choices and Smart Mobility

IFCC Main Challenges

Achievements Highlights

Achievements: Cost

• Development of non-precious metal Catalysts:

Synthesis and characterization of transition metal complexes with high and efficient reactivity towards oxygen reduction. Electrochemical and theoretical studies.

3D polymers of molecular PGM-free catalysts (state-of-the-art activity for its class)

Design of Molecular PGM-free ORR Catalysts

Highly dense atomically dispersed PGM-free ORR catalysts: 1% wt Fe loading (3x higher than the state-of-the-art) (LE)

In collaboration with Los Alamos National Lab (PZ) and Oak Ridge National Lab (DC)

Fuel Choices and Smart Mobility Initiative

Development of Alkaline Membrane Electrolyte Fuel Cells

Predictive models for AEMFC life-time higher than 5000 h, suitable for automotive applications. (DD)

Consortium

Unravelling mysteries of hydrogen electrooxidation in anion exchange membrane fuel cells: Models for the design of new HOR catalysts. (DD)

Design of Catalyst Layers: Improving Flow

"Self-templating" of hierarchical porosity by alkaline-earth nanoparticles (DE)

Tuning pore size to:

- Boost flow
- Affect oxygen reduction selectivity (2 / 4 electrons)

'Lung'-inspired carbon porosity: templating by ZnO 'trees' (DE)

Studying effects of channel size and branching on **flow** in catalyst layer

Achievements: Catalyst and Support Durability

Increase in more than 5x in support durability with Pt/Mo₂C in half cell

Shown feasibility of SSM synthesis for Mo₂C/TaC composite cathode supports(5000h operation with <10% degradation)

Fuel

Initiative

Choices and Smart Mobility

Demonstrated an unusual stability of Pt Nanorafts on Mo₂C surface: a direct consequence of the disordered carbon arrangement on the Mo₂C surface

E (V vs. RHE)

Achievements: Catalyst and Support Durability

- Development of new stability protocol for AEMs/AEIs that simulates the environment of an AEMFC in operation. (hopefully to be included soon into DOE's official protocols)
- Identification of the main reason of AEMs/AEIs degradation during AEMFC in operation. (DOE target in the form of "cell stability >2000h test at 600mA/cm2 at >60°C")
- Design of **methodologies for accelerated stress tests** and their implementation

20000

 Successful electrospinning of sub-micron Nafion nanofibers, and dual electrospinning of Nafion and PVDF nanofibers for enhanced stability and conductivity.

- Baseline for **PEM degradation studies**
- Studies of semi-interpenetrating polymer networks solid polymer electrolytes
- Studies of pore-filling Nafion, synthesis and transport properties
- The effect of CeO₂ on H₂O₂ disproportionation was proved and a new method for making thin coating of CeO₂ was developed (coating <20 μm was attained, no loss of conductivity, initial MEPC results were carried out).

Choices and

Initiative

Smart Mobilitv

Collaborations in Israel

NL-IL Mini-Symposium on Hydrogen and Renewable Energy

Smart Mobility

Initiative

מרכז לאומי לאנרגיה בת קיימא

NISE | National Institute for Sustainable Energy

1.9.20 | יאי אלול ה'תש"פ

Thank You!

