Developments in solar research at TU Eindhoven

HIT

DUTCH ISRAELI RENEWABLE ENERGY CONVERSION AND STORAGE - MINI SYMPOSIUM – JANUARY 13, 2021

René Janssen

Molecular Materials and Nanosystems, Departments of Chemical Engineering & Chemistry and Applied Physics

Solar research groups at TU/e

Erwin Kessels atomic layer deposition

Adriana Creatore atomic layer deposition

Michael Debije luminescent concentrators

Erik Bakkers nanowires

Shuxia Tao perovskites

Roel Loonen building integrated

Angèle Reinders solar cell design

René Janssen organic & perovskites

https://www.tue.nl/en/news/features/how-tue-technology-brings-the-endless-power-of-the-sun-to-your-home-and-car/

2 Solar cell research at TU/e

Molecular Materials and Nanosystems (M2N)

Organic solar cells Perovskite solar cells Solar fuels

Redox flow batteries Polaritons in organic crystals Organic light-emitting diodes Photodetectors

www.m2ngroup.nl

3

Organic bulk-heterojunction solar cells

Use two organic semiconductors with off-set energy levels

4 Solar cell research at TU/e

TU/e

lamellar stacking 2.2-2.4 nm

Hans van Franeker J. Am. Chem. Soc. **2015**, 137, 11783

6 Solar cell research at TU/e

Dario Di Carlo Rasi, Adv. Energy Mater. 2017, 7, 1701664 & Adv. Mater. 2018, 30,1803836

7 Solar cell research at TU/e

Serkan Esiner, J. Mater. Chem. A **2015**, 3, 23936

High-efficient organic solar cells

8 Solar cell research at TU/e

Haijun Bin, to be published

9 Solar cell research at TU/e

TU/e

10 Solar cell research at TU/e

Junke Wang, Kunal Datta, Simone van Laar

Photo-electrochemical reduction of CO₂ to CO and H₂

11 Solar cell research at TU/e

Serkan Esiner, Cell Reports Physical Science 2020, 1, 100058

TU/e

Tandem cells – 19.8%

2 different band gap perovskites at 1.73 and 1.23 eV
11 functional layers integrated ~ 1 μm thick

12 Solar cell research at TU/e

Junke Wang, Nature Commun. **2020**, 11, 5254

13 Solar cell research at TU/e

Junke Wang, Kunal Datta, Valerio Zardetto, et al. (to be published)

Triple cells - 16.8%

- 3 different band gap perovskites at 1.73, 1.57 and 1.23 eV working in concert
- \Box 17 functional layers integrated in a single device < 1.5 μ m thick

14 Solar cell research at TU/e

Junke Wang, Nature Commun. 2020, 11, 5254

BCP

C₆₀

1.23 eV Perovskite

Ultrasensitive sub band gap photocurrent spectroscopy

- Nine orders of magnitude in EQE
- Allows determining energy & location of defect
- 15 Solar cell research at TU/e

Bas van Gorkom, to be submitted

Acknowledgements

Members and former members of M2N group

National & International collaborations Funding

תודה על תשומת לבכם. Thank you for your attention Dank voor uw aandacht

16 Solar cell research at TU/e

