

Materials design for photo and electrochemical reactions

Menny Shalom

Department of Chemistry – Ben Gurion University of the Negev

2D Materials for Energy

N. Linares, A. M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. García-Martínez, Chem. Soc. Rev. 2014, 43, 7681.

Metal-free materials

Light, cheap, environmentally-friendly and tunable

Carbon - Semimetal, Conductive Electronic device g-Carbon nitride – Semiconductor, N content ~60 wt%, Photo(electro)catalysis Heterogeneous catalysis h-Boron nitride - Insulator, thermal and chemical stability Lubricant, ceramic, plastics, rubbers

We aim to overcome the traditional solid state chemistry limitations and to obtain new materials that are not known yet.

To study their optical, chemical, catalytic properties as a function of their composition, etc...

Carbon/Boron/sulfur phosphorous nitride...

Materials design for photo and electrochemical reactions

Carbon nitride materials for photochemical reactions

Carbon nitride materials as fluorescence probes

Carbon nitride layers for photoelectrochemical reactions

New metal-free materials (C-N-B-P-S-O)

Metal nitrides, phosphides and carbides as efficient electrocatalysts

Solar fuel

Artificial photosynthesis pathway from sunlight to fuels

© Royal Society of Chemistry

www.rsc.org/solar-fuels

Solar cell – electrical energy Sun to fuel – chemical energy

Alternative source of energy for replacing fossil fuels

Artificial photosynthesis

Replace metal-based photoelectrocatalysts

Photoactive materials for sunlight-driven reactions: photocatalyst, absorber layer in photoelectrochemical and solar cells

Electrocatalyst : water splitting and CO₂ reduction **Unique (photo)electronic properties :** Light-emitting diodes and other electronic devices

Electrochemical Water Splitting

Water splitting, nitrogen reduction reaction and organic molecules oxidation

Possible catalysts –

- Precious metal based IrO₂, RuO₂
- Non-precious metals NiFe, NiS, Fe_xO_y
 - ✓ Nanomaterials
 - Single-atom

Metal nitrides, phosphides and carbides as well as metal-free materials as efficient electrocatalysts

Graphitic carbon nitride (g-C₃N₄) materials

Nature Materials 2009. 8, 76 . J. Am. Chem. Soc. 2014, 136, 1730. J. Phys. Chem. C. 2014, 46, 26479. Energy Environ. Sci., 2012, 5, 6717. Chem. Commun., 2012,48, 3430

Why carbon nitride materials?

- We can't control the chemical and the photophysical properties
- Poor charge separation
- Wide band gap
- Low photoactivity

Supramolecular structures

A gallery of carbon nitride materials

Barrio, J. and Shalom, M. (**2018**), Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. *ChemCatChem*. doi:<u>10.1002/cctc.201801410</u>.

Semiconductor requirements in PEC

Solar fuel production – converting solar to chemical energy

From powder to substrate - the challenges

There was no convenient and efficient method to deposit carbon nitride on substrates

Poor charge separation and transfer

Not fully suitable band gap

G. Peng, L. Xing, J. Barrio, M. Volokh, M. Shalom, *Angew. Chem. Int. Ed.* **2018**, *57*, 1186. Selected as Hot paper

Highly-Porous reduced graphene oxide/CN films as an efficient PEC

Representative structure only: not true identity.

PEC measurements with hole scavenger

G. Peng, J. Volokh, Tzadikov, M. Shalom, Adv. Energy Mater. 2018, 8, 1800566.

Electrode proposed structure

Conclusions

- Controlling the chemical, (photo)electronic and catalytic properties of carbon nitride by supramolecular chemistry
- We can transfer the wide knowledge from the traditional solid state chemistry of carbon nitride into films with different substrates
- We envision that carbon nitride can be used as efficient photoelectrocatalyst -
- The electronic and catalytic properties can be tuned by changing the reaction condition
- It is still required to improve understanding of fundamental processes such as charge separation (excitation lifetime, diffusion length and more)

Acknowledgement

Universidad Politécnica de Valencia

Prof. Hermenegildo García

Dr. Josep Albero Sancho

Universitat Jaume

Dr. Sixto Gimenez

Universidad Autónoma de Madrid Prof. Felix Zamora and Dr. Pilar Amo

South China Normal University,

Guangzhou, China

Prof. Lidan Xing

Thank you for your attention!