

Electrocatalysis for the synthesis of chemicals

Marta Costa Figueiredo

NL IL mini symposium on energy conversion and storage, 13/01/2021

m.c.costa.figueiredo@tue.nl

Outline

- Introduction
 - Electrocatalysis
 - Electrocatalysis at TU/e
- Electrochemical conversion of CO₂ to formic acid
- Nitrate and Nitrite reduction to ammonia and urea

Introduction

Energy storage and conversion

Energy storage and conversion

Electrical energy storage systems

Energy storage and conversion

Or
Use of energy surplus to produce chemicals

Electrosynthesis of chemicals

Electrosynthesis of chemicals

Electrosynthesis of chemicals

Successful examples

- Chlor alkali (chlorine and caustic soda)
- Aluminum production
 (before electrolysis implementation aluminum was as expensive as silver)

Electrocatalysis

Electrocatalytic synthesis

Electrocatalytic approach of synthesis

Electrocatalysts: electrode material that interacts specifically with some species involved in the reaction and remains unaltered after the reaction.

Electrocatalytic synthesis

Electrocatalytic approach of synthesis

Properties of the electrode

- Structural effects
- Composition effects

- Interaction of the substrate with the electrode
- Adsorption of intermediates or products

Electrocatalysts: electrode material that interacts specifically with some species involved in the reaction and remains unaltered after the reaction

Electrocatalytic synthesis

Electrocatalytic approach of synthesis

Properties of the electrode

- Structural effects
- Composition effects

- Interaction of the substrate with the electrode
- Adsorption of intermediates or products

Catalysts development, unravelling reaction mechanism, reaction conditions

High current densities, high faradaic efficiencies, low overpotentials, High selectivity

Electrocatalysis at TU/e - How

Electrocatalysis at TU/e - What

Electrocatalysis at TU/e – What

- CO₂ reduction to formic acid
- Nitrogen containing compounds reduction to ammonia
- Urea electrosynthesis from nitrate and CO₂
- CO₂ reduction to ethanol
- E-Fisher Tropsh (CO conversion to oxygenates and high chain hydrocarbons)
- Synthesis of Dimethyl carbonate from CO₂

Electrocatalysis at TU/e – What

- CO₂ reduction to formic acid
- Nitrogen containing compounds reduction to ammonia
- Urea electrosynthesis from nitrate and CO₂
- CO₂ reduction to ethanol
- E-Fisher Tropsh (CO conversion to oxygenates and high chain hydrocarbons)
- Synthesis of Dimethyl carbonate from CO₂

CO₂ conversion to formic acid

CO₂ conversion to formic acid

Adv. Energy Mater. 2020, 10, 1902338

Effect of dopants

$$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$$

Catalysts

- Sn
- In
- Bi
- Co, Pb, Pd, Tl, Hg, Cd

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement **No 838014**".

Tim Wissink

In₂O₃ doped catalysts

Flame spray pyrolysis (FSP)

- liquid indium nitrite precursor solution adding another metal nitrite for dopants, such as Ce, Co, Ni, Cu or Pd
- · Oxygen methane flame
- After ignition the metal nitrites form droplets, combust and subsequently nucleate and condensate into metal oxide particles.
- The size and composition are tuned by the relative concentrations in the precursor and gas flow speed

CO₂ conversion to formic acid

GDE loading: 5:5:3 weight ratio In₂O₃ NP's : Activated Carbon : Nafion ionomer.

In₂O₃ doped catalysts

Catholyte: 0.5M H₂CO₃ (22ml/min), CO₂ saturated (15ml/min)

Anolyte: 0.5M H₂CO₃

- In₂O₃ doped with Pd, Co, CeO₂
- In₂O₃ performs better at high current densities
- CeO₂ might be a good dopant for lower current densities

NOx electrochemical reduction

Electrochemical NOx Conversion

Ammonia

Electrochemical NOx Conversion

Ammonia

Bookhaven National Laboratory

Dimitra Anastasiadou

Electrochemical NO₃ reduction pathways

Electrochemical NO₃ reduction pathways

Electrodeposition of CuRu catalysts

= Rh feature

= Cu feature

Summary

Summary

Electrocatalytic synthesis can help on storing/using the renewable energy

Technologies are still very immature

Further research and developments are required

Thank you for you attention

Prof. Emiel Hensen

